Nonlinear delayed feedback model for incompressible open cavity flow
نویسندگان
چکیده
منابع مشابه
Comparison of three different numerical schemes for 2D steady incompressible lid-driven cavity flow
In this study, a numerical solution of 2D steady incompressible lid-driven cavity flow is presented. Three different numerical schemes were employed to make a comparison on the practicality of the methods. An alternating direction implicit scheme for the vorticity-stream function formulation, explicit and implicit schemes for the primitive variable formulation of governing Navier-Stokes equatio...
متن کاملA Flow-resonant Model of Transonic Laminar Open Cavity Instability
A transonic air stream flowing over a rectangular cavity or enclosure is unsteady. At certain flow conditions, large scale oscillations develop in the shear layer which, for an open cavity, spans across the whole enclosure. The convected shear layer instabilities interact with the cavity geometry, they generate resonance, and induce large amplitude wall pressure fluctuations, aerodynamic pressu...
متن کاملMonolithic Newton-multigrid solution techniques for incompressible nonlinear flow models ⋆
We present special Newton-multigrid techniques for stationary incompressible nonlinear flow models discretised by the high order LBB-stable Q2P1 element pair. We treat the resulting nonlinear and the corresponding linear discrete systems by a fully coupled monolithic approach to maintain high accuracy and robustness, particularly with respect to different rheological behaviour but also regardin...
متن کاملEffective desynchronization by nonlinear delayed feedback.
We show that nonlinear delayed feedback opens up novel means for the control of synchronization. In particular, we propose a demand-controlled method for powerful desynchronization, which does not require any time-consuming calibration. Our technique distinguishes itself by its robustness against variations of system parameters, even in strongly coupled ensembles of oscillators. We suggest our ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Fluids
سال: 2020
ISSN: 2469-990X
DOI: 10.1103/physrevfluids.5.024401